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ABSTRACT
The thermal properties of β-Ga2O3 can significantly affect the performance and reliability of high-power electronic devices. To date, due
to the absence of a reliable interatomic potential, first-principles calculations based on density functional theory (DFT) have been routinely
used to probe the thermal properties of β-Ga2O3. DFT calculations can only tackle small-scale systems due to the huge computational cost,
while the thermal transport processes are usually associated with large time and length scales. In this work, we develop a machine learning
based Gaussian approximation potential (GAP) for accurately describing the lattice dynamics of perfect crystalline β-Ga2O3 and accelerating
atomic-scale simulations. The GAP model shows excellent convergence, which can faithfully reproduce the DFT potential energy surface at
a training data size of 32 000 local atomic environments. The GAP model is then used to predict ground-state lattice parameters, coefficients
of thermal expansion, heat capacity, phonon dispersions at 0 K, and anisotropic thermal conductivity of β-Ga2O3, which are all in excellent
agreement with either the DFT results or experiments. The accurate predictions of phonon dispersions and thermal conductivities demon-
strate that the GAP model can well describe the harmonic and anharmonic interactions of phonons. Additionally, the successful application of
our GAP model to the phonon density of states of a 2500-atom β-Ga2O3 structure at elevated temperature indicates the strength of machine
learning potentials to tackle large-scale atomic systems in long molecular simulations, which would be almost impossible to generate with
DFT-based molecular simulations at present.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0027643., s

I. INTRODUCTION

As a promising semiconductor material, beta-phase gallium
oxide (β-Ga2O3) exhibits ultrawide bandgap, large electrical break-
down strength, and excellent thermal stability.1,2 The bandgap of
β-Ga2O3 is up to ∼4.8 eV,3 which is even larger than that of
GaN (∼3.4 eV).4,5 Moreover, the unique properties endow β-Ga2O3
with a higher breakdown voltage and higher breakdown field than

GaN.4 This results in the Baliga’s figure of merit of β-Ga2O3
approaching four times larger than that of GaN. In addition to
the lower production cost of bulk β-Ga2O3 crystals than that of
GaN,6,7 β-Ga2O3, thus, has been treated as an ideal candidate for the
next-generation high-power, high-frequency, and high-efficiency
electronic devices.

Besides these excellent electronic properties, the thermal prop-
erties of β-Ga2O3 are evidently critical for its application in
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high-power devices.8,9 High heat dissipation in a β-Ga2O3-based
device can cause excessive temperature driven by self-heating,
resulting from the relatively low thermal conductivity of β-Ga2O3,
which is one order of magnitude lower than that of GaN (∼240 W
m−1 K−1 at room temperature).10–12 The increase in the electron–
phonon scattering at high temperature will degrade the electron
transport, resulting in the loss of performance of the β-Ga2O3-based
devices. Therefore, a thorough knowledge of the thermal properties
of β-Ga2O3 is fundamental and significant for facilitating the devel-
opment of effective thermal management strategies to advance the
high-power devices based on β-Ga2O3.

Atomic-scale simulations have long been a central approach
to provide the deep insight into the thermal properties of
β-Ga2O3. There are two routine atomic-scale modeling techniques,
i.e., explicit quantum chemical methods mostly based on density
functional theory (DFT) and molecular dynamics (MD) simulations
using simple empirical potentials. State-of-the-art DFT methods that
treat electron explicitly can accurately sample the potential energy
surface (PES) of a set of atoms and atomic forces from the par-
tial derivatives of the total energy. However, considering large time
and length scales of thermal transport processes, high computa-
tional cost limits the DFT methods for modeling thermal trans-
port properties. Simple empirical potentials with certain functional
forms are several orders of magnitude faster than DFT.13,14 Never-
theless, the parameters in empirical potentials are usually optimized
by fitting specific physical properties, which makes empirical poten-
tials less accurate and less transferrable than DFT to other physical
properties not employed to optimize parameters.15 The Bucking-
ham potential is a typical empirical potential for β-Ga2O3. There
are two available studies reporting the potential for β-Ga2O3,16,17

while both of them generate remarkably distinct phonon dispersions
from DFT. When it comes to the thermal conductivity prediction,
the anharmonic interactions of phonons have to be well described,
which places a greater demand on the accuracy of interatomic
potentials.

Recently, a methodology generating interatomic potentials by
machine learning (ML) is beginning to emerge, which has shown
great potential for getting rid of the aforementioned trade-off
between cost and accuracy.13 The core of the ML potentials is a rep-
resentation of the PES through a set of local environment descrip-
tors. After obtaining the adequate sampled data of the PES on
the desired regions of phase space by quantum-mechanical calcu-
lations, the ML algorithms are used to accurately interpolate ener-
gies and forces for arbitrary structures. Unlike the empirical poten-
tials, the ML potentials do not require a prior assumption about
the functional form. The mappings between the PES and the local
environment descriptors can be directly learned from the refer-
ence data, which makes the ML potentials an unbiased represen-
tation of the PES and resultantly possess good transferability.18,19

So far, there are several successfully developed ML potentials, such
as the neural network potential,20,21 the Gaussian approximation
potential (GAP),18,22 the spectral neighbor analysis potential,23,24 the
moment tensor potential,25,26 the atomic cluster expansion poten-
tial,27 and the atomic permutationally invariant polynomials poten-
tial.28 It has been confirmed that a well-trained ML potential can
give access to atomistic simulations achieving near-DFT accuracy
but much cheaper and orders of magnitude faster than the DFT
calculations.

In this work, we introduce an accurate interatomic Gaussian
approximation potential (GAP) for the single-crystalline β-Ga2O3,
with the aim of facilitating the effective prediction for its thermal
properties from molecular simulations. In Sec. II, we briefly intro-
duce the GAP methodology and illustrate how the configurations
of the single-crystalline β-Ga2O3 and accurate quantum-mechanical
training data are generated. In Sec. III, we first evaluate the max-
imum accuracy that any finite-range interatomic potential for β-
Ga2O3 can achieve as a function of its neighbor cutoff. This process
is independent of any ML-based potential models. Then, we test
how much the accuracy of our GAP model deviates from the max-
imum accuracy. Finally, we present the results of the ground-state
lattice parameters, heat capacity, coefficients of thermal expansion
(CTE), phonon dispersions at 0 K, and anisotropic thermal con-
ductivity of β-Ga2O3 as predicted by our GAP model. Furthermore,
we compare the calculation results with the DFT benchmarks and
some experimental data to assess the performance of the potential.
Finally, our GAP model is applied to generate the phonon den-
sity of states (PDOSs) of a large-scale β-Ga2O3 structure at finite
temperature. Main conclusions of this study are summarized in
Sec. IV.

II. METHODOLOGY
A. Construction of a Gaussian approximation
potential

Herein, we outline the general procedure of how a Gaussian
approximation potential is constructed. There are three ingredients
to achieve this goal.

The first ingredient is to sample a set of reference configura-
tions on the desired regions of phase space and associated quantum-
mechanical data including accurate total energies, forces on atoms,
and virial stresses. These original reference data are then stored
according to a suitable database format for training and testing.

The second ingredient is to convert the atomic configurations
to the suitable machine-readable data as inputs for the PES fit.
As fundamental symmetry requirements, all descriptors for atomic
environment have to be invariant to translation, rotation, and per-
mutation with respect to atom indexing. For the β-Ga2O3 crystals,
the many-body interactions should be taken into consideration to
guarantee the accuracy of potentials. A many-body descriptor can
comprise the information of all neighbors of a centered atom up to a
given cutoff radius. This work adopts the so-called “Smooth Overlap
of Atomic Position” (SOAP) descriptor, which is initially developed
for use with GAP.22 Although the SOAP representation is not strictly
complete along with many similar two- and three-body representa-
tions,29 it is a widely used general atom-centered representation30–32

and is the basis of many successful ML potentials.33–42

The final ingredient is to complete the PES fit based on the
ML approaches mapping reference energies from descriptors. GAP
adopts a kernel-based ML method, i.e., Gaussian process regres-
sion,43 to carry out the fit. In the practical implementation of GAP,
the total energy of the system is decomposed into individual atomic
contributions,

E = ∑
i
ε(qi), (1)
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where ε(qi) is the energy contribution of the ith atom and qi is a
descriptor characterizing the local atomic environment around the
ith atom. The local atomic energy contribution ε(qi) is given by a
linear combination of kernel functions,

ε(qi) = ∑
j
αjK(qi,qj), (2)

where K is a fixed kernel function quantifying the degree of similar-
ity between the atomic environments described by qi and qj. Such a
“kernel trick” is a common strategy to solve the nonlinear regression
problem in ML-based methodologies.44 The unknown coefficient
vector α is determined via the fitting procedure of machine learn-
ing. In SOAP, the local environment of the ith atom is represented
by its neighbor density function within a given cutoff rcut,

ρi(r) = ∑
j
fcut(rij) exp[−

(ri − rij)2

2σ2
at
], (3)

where ri denotes the position vector of atom i and σat controls the
smoothness of the potential. Here, fcut is a cutoff function going
smoothly to 0 at rcut and takes the form of

fcut(r) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

1, r < rcut − Δr,
1
2
[1 + cos(

r − rcut + Δr
Δr

π)], rcut − Δr < r ≤ rcut ,
0, r > rcut ,

(4)

where Δr denotes the cutoff transition width in which fcut decreases
smoothly from 1 to 0. Atomic neighbor densities are then expanded
in a local basis set of orthogonal radial basis functions gn(r) and
spherical harmonics Y lm as

ρi(r) = ∑
n<nmax

∑

l<lmax

l

∑

m=−l
cinlmgn(r)Ylm(

r
r
), (5)

where cinlm are the expansion coefficients. The spherical power spec-
trum of these expansion coefficients then forms the descriptor as

(qi)nn′ l =
1

√

2l + 1
∑

m
(cinlm)

∗
cin′ lm, (6)

which is strictly translational, rotational, and permutational invari-
ance. For the many-body SOAP descriptor, the dot product kernel is
the natural choice, which is determined by

K(qi,qj) =
RRRRRRRRRRR

qi ⋅ qj
∣qi∣ ⋅ ∣qj∣

RRRRRRRRRRR

ζ

. (7)

The role of the positive integer ζ is to improve the sensitivity of the
kernel and also increase the body order of the model. To reduce the
computational cost, a sparsification method45 is used for the SOAP
kernel. More details about the construction of the Gaussian approx-
imation potential can be found in the literature.18,22,46 The main
hyperparameters used in this work for constructing the descriptors,
the kernel functions, and training a GAP are summarized in Table I.
The more information about those symbols can be found in the
literature.46,47

TABLE I. Hyperparameters used in the training of the GAP model.

rcut (Å) 5.5
Δr (Å) 1.0

ζ 4
σat (Å) 0.5

σenergy
υ (eV/atom) 0.0001
σforce
υ (eV/Å) 0.01

σvirial
υ (eV/atom) 0.01

nmax 10
lmax 6

Sparse method CUR
Representative points 5000

B. Generation of training data
The atomic configurations are sampled from various molecular

dynamics trajectories using ab initio molecular dynamics (AIMD)
and MD with various iterations of our GAP model. Once the config-
urations are determined, the values of the associated energies, forces,
and virial stresses are all calculated at the same level of DFT using
the Vienna Ab Initio Simulation Package (VASP).48,49 We perform
all DFT calculations using the Perdew–Becke–Erzenhof functional50

with a projector augmented wave method,51 a plane wave basis cut-
off of 520 eV, and a Gaussian smearing of 0.1 eV width. The halting
criterion for the self-consistent field iterations is set to 10−7 eV. The
unit cell of β-Ga2O3 with 20 atoms is optimized with a 4 × 16 × 8
grid for Brillouin zone sampling. In the training database, each con-
figuration consists of the 2 × 2 × 2 supercell with 160 atoms. For
single point calculations of those supercells in the training database,
we have employed a 1 × 4 × 2 k-space sampling mesh, which is well-
converged with the tolerance in an energy of ∼10−5 eV/atom and
force of ∼10−4 eV/Å compared with a 2 × 8 × 4 grid.

To describe the thermal transport properties of β-Ga2O3, the
potential model has to provide precisely harmonic and anharmonic
force constants at different volumetric strains. Thus, the GAP model
should learn the variation of energies as a function of lattice vectors.
To achieve this goal, simulation cells of β-Ga2O3 are reconstructed
with uniform strains on each lattice constant from −4% to 4% with
the step of 1%. In addition to various temperatures to be considered,
only using AIMD to generate all trajectories for these simulation
cells with different lattice constants will cost a lot of computational
sources. To reduce the cost, AIMD is only used to generate the first
set of training data for the simulation cell with the fully optimized
and relaxed lattice parameters. There are totally 800 snapshots taken
with a time step of 40 fs from AIMD at temperatures between 300 K
and 1500 K. The total energies, forces, and virial stresses of these
atomic configurations are recorded to train the initial GAP model. A
further set of trajectories at different volumetric strains are generated
using MD with the preliminary GAP model in the NVT ensem-
ble. Single point calculations that are much cheaper than AIMD are
then performed to record the total energies, forces, and virial stresses
of atomic configurations sampled from MD with a time interval of
445 fs at temperatures between 100 K and 1000 K. The new database
comprises of 801 training datasets and 90 testing datasets, which
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is used to afresh teach a GAP model. After a few iterations, an
improved and accurate GAP model can be obtained in this way.
In this work, all training processes are performed using the freely
available QUIP package at https://github.com/libAtoms/QUIP.

III. RESULTS AND DISCUSSIONS
For valid implementations of GAP, the assumption about the

localization of ε has to hold so that the total energy can be divided
into a sum of local terms. Therefore, we will perform locality tests
for β-Ga2O3. This process, in turn, can determine the maximum
accuracy with which any finite-range potential can be approximated.
Here, we adopt the similar procedure for carrying out locality tests
as employed in the previous literature.33 We first give an optimized
simulation cell of β-Ga2O3 with a supercell size of 2× 5× 3, compris-
ing 600 atoms. We then consider a central atom and fix all neighbors
of the central atom within a sphere of radius rfix. Furthermore, vari-
ous simulation cells are generated by changing the atomic positions
outside the fixed sphere and transferred to DFT to calculate the
forces on the central atom. Finally, the locality is characterized by
the standard deviation of these forces as a function of rfix.

Figure 1 shows the force locality tests for β-Ga2O3 structures,
which include two ways of moving atoms. All atomic positions out-
side rfix are randomly displaced with a standard deviation of 0.1 Å in
Fig. 1(a), while large distortions are generated by MD at high tem-
perature in Fig. 1(b). Both Ga and O are chosen as sphere centers for
independent locality tests. The results show that the force deviations
decay rapidly as rfix increases, and β-Ga2O3 exhibits the strong force
locality with regard to different distortion ways. We observe that the
overall force deviations derived from MD-induced distortions are
smaller than those from random distortions. The same phenomenon
is also observed in Ref. 33 where a reasonable explanation has been
given. Because the training data in this work are generated from MD,
the force standard deviations from sample distortions using MD are
more suitable to serve as the approximate maximum accuracy that
any potential with a certain cutoff radius can achieve. Considering
the trade-off between the computational expense during training

and the precision requirement, we choose rcut as 5.5 Å to train our
GAP model.

After estimating the precision limit of a finite-range poten-
tial, we here validate the accuracy of our GAP model based on
the DFT reference data. The training and testing datasets contain
384 480 and 43 200 atomistic reference force components, respec-
tively. As shown in Fig. 2, the total energies and atomic forces as
predicted by our model are compared with those from DFT. It is
observed that the energies are well reproduced by our GAP with
a low root-mean-squared error (RMSE) of 0.0003 eV/atom for the
testing datasets. Forces in the testing datasets are predicted with an
RMSE of 0.050 eV/Å for the Ga atom and 0.038 eV/Å for the O atom,
respectively. The results demonstrate that our GAP model is a good
representative of ab initio PES and, indeed, reaches the target force
accuracy, as shown in Fig. 1(b). It is noted that the test error is much
higher than the training error for those configurations with higher
energy. This can be elucidated by the fact that the intense crystal
lattice vibration at elevated temperature leads to an increase in the
range of structural parameters, which may affect the extrapolation
accuracy of the GAP model. Therefore, sampling more configura-
tions with higher energy to train the GAP may further reduce the
test error at elevated temperature. We also perform an investiga-
tion for the convergence of the GAPs with the training size. The
subsets of 50, 200, 400, and 600 structures are extracted from the
total 801 structures to train the GAPs, respectively, with the 90 test-
ing structures being held unchanged. The convergence results with
respect to the prediction of energies and forces are shown in Fig. 3.
It is observed that the GAP model appears to have simultaneously
converged in energy and force at a small training dataset size of
∼400 structures. Interestingly, even with a relatively smaller train-
ing datasets of ∼200 structures, the GAP model also presents a good
convergence.

We now move on to evaluate the quality of our GAP for mod-
eling the thermal properties of β-Ga2O3. We begin by employ-
ing the GAP model to predict the ground-state lattice parameters,
which are a fundamental property for any atomistic model and may
affect many intrinsic properties of materials. The reproduced lat-
tice parameters by the GAP model are a = 12.51 Å, b = 3.10 Å, and

FIG. 1. Force locality tests for β-Ga2O3.
(a) Structures are created by randomly
moving atomic positions outside the fixed
sphere. (b) Large structure distortions
are generated by MD at high temper-
ature. There are ten independent dis-
tortions that are constructed for each
central atom.
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FIG. 2. Comparison of DFT-computed
and GAP-predicted (a) total energies
and (b) interatomic forces on a test set
of 14 400 atomistic environments. Here,
error specifically represents the absolute
error.

c = 5.92 Å with β = 103.72○, which are in excellent agreement with
our DFT results with an error of 0.02%. Moreover, the lattice param-
eters from our GAP are also in line with the previous computational7

and experimental results.52

FIG. 3. RMSEs in predicted energies and forces of the testing datasets as a
function of the size of the training structures.

Our GAP model is then used to probe the heat capacity and the
coefficients of thermal expansion (CTE) of β-Ga2O3. The heat capac-
ity is a fundamental and important thermal property. To extract
the thermal conductivity values from the time-domain thermore-
flectance measurements, it is necessary to know the heat capacity
of β-Ga2O3 at different temperatures. We calculate the heat capacity
of β-Ga2O3 under the quasi-harmonic approximation (QHA) using
the PHONOPY package.53 Figure 4(a) summarizes the heat capac-
ity values of β-Ga2O3 from our GAP model, the DFT calculations,
and the experiment measurements by using a differential scanning
calorimeter.54 It is shown that the data from our GAP model agree
well with those from the DFT calculations and the experimental
measurements. Recently, the heterostructures integrating β-Ga2O3
with other materials emerge to optimize the performance of elec-
tronic devices, which has gotten more and more attention.55–57 In
practical applications, the thermal expansion of β-Ga2O3 plays a cru-
cial role in determining heteroepitaxial and heterojunction strains
caused by thermal mismatch, which contributes to the selection
of proper materials for epitaxial growth.58 Here, the coefficient of
thermal expansion of β-Ga2O3 is defined as

CTE =
1
VT

∂VT

∂T
, (8)
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FIG. 4. Temperature-dependent (a) spe-
cific heat capacity and (b) thermal expan-
sion coefficients of β-Ga2O3.

where V denotes the volume of the β-Ga2O3 bulk and T repre-
sents the temperature in Kelvin. We calculate the CTEs under the
quasi-harmonic approximation using the PHONOPY package.53 As
shown in Fig. 4(b), the GAP model introduced here quantitatively
reproduces the thermal expansion determined by DFT calculations.
Both GAP and DFT predict that the CTEs are strongly dependent
on temperatures between 0 K and 1000 K. It is clear that with an
increase in temperature, the CTEs grow rapidly up to ∼300 K, and
the slopes become smaller at higher temperatures.

The prediction of the phonon dispersions and thermal con-
ductivities of a material is an excellent metric for the quality of
a potential to describe the lattice dynamics. We first calculate the
second-order harmonic and third-order anharmonic interatomic
force constants (IFCs) using the finite displacement method.59 Com-
bining the PHONOPY package59 with the second-order IFCs from
our GAP and DFT, the phonon dispersions of β-Ga2O3 at 0 K are
determined, as illustrated in Fig. 5. As a characteristic of the ionic
crystal, the splitting of LO–TO phonons at the Γ point is observed,

FIG. 5. Phonon dispersion of β-Ga2O3 at 0 K predicted by DFT and the GAP
model.

which is related to the long-range Coulomb interactions. Because
our model is missing the Coulomb interactions, we have added the
non-analytical term correction to the dynamical matrix to resolve
the splitting of LO–TO phonons at the Γ point. It is shown that the
GAP model accurately predicts the phonon frequencies at almost
of all high-symmetry points and the dispersion behavior of each
phonon branch. As a matter of fact, although the missing Coulomb
term leads to some error on the forces, it will be shown that the
accuracy of our model is high enough to generate the excellent ther-
mal conductivity. If the long-range Coulomb interactions become
important later for other calculations, we can properly put in the
Coulomb interaction, with fixed partial charges, and fit the GAP
correction on top of that. This will automatically give the correct
LO–TO splitting and also improve the accuracy of the forces. Similar
treatment for GaN can be found in the literature.18

We then use the second-order and third-order IFCs to per-
form the calculations of the thermal conductivity of β-Ga2O3 by
solving the phonon Boltzmann transport equation (BTE) using the
SHENGBTE package60 with a 5 × 17 × 9 mesh for sampling the first
Brillouin zone over temperatures ranging from 100 K to 600 K. It is
expected that the thermal conductivities of β-Ga2O3 are anisotropic
along the [010], [100], and [001] crystallographic directions due to
the monoclinic lattice structure. The thermal conductivity tensor of
the monoclinic crystal takes the form of

K =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

κxx 0 κxz
0 κyy 0
κxz 0 κzz

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (9)

where the subscripts x, y, and z correspond to the Cartesian axes. In
the construction of the β-Ga2O3 supercell, we take [100] and [010]
to coincide with the x axis and y axis. At that time, [001] is orthog-
onal to y axis, and there is an included angle of β between [001] and
the x axis. Obviously, the thermal conductivities along the [100] and
[010] directions are equal to the components κxx and κyy, respec-
tively. However, the thermal conductivity along the [001] direction
is calculated from

κ[001] = κxx cos2 β + κxz sin 2β + κzz sin2 β. (10)
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FIG. 6. Comparison of anisotropic ther-
mal conductivity of β-Ga2O3 along the
(a) [010], (b) [100], and (c) [001] crys-
tallographic directions between the GAP
model and the literature results.7,54,61

As shown in Fig. 6, the GAP model measures the thermal conduc-
tivities of β-Ga2O3 along the [010], [100], and [001] crystallographic
directions. The thermal conductivity using the GAP shows overall
good agreement with the results from DFT7 and experiments.54,61

As predicted by GAP, the highest thermal conductivity is along the
[010] direction among all three crystallographic directions, while
the lowest along [100]. Moreover, the prediction of our GAP shows
that the thermal conductivity of β-Ga2O3 follows an ∼1/Tm (m =
1.47) dependence throughout the measured temperature range from
100 K to 600 K. The characteristic of such a relationship indicates
that the Umklapp scattering is the dominant phonon scattering
mechanism of β-Ga2O3.

In Fig. 7, we show more phonon transport characteristics in
β-Ga2O3, calculated from the GAP model. The accumulated ther-
mal conductivity as a function of the phonon frequency at 300 K
is presented in Fig. 7(a). It is clear to see the anisotropy along the
three Cartesian axes. Moreover, it is revealed that more than 90%

of κ are contributed from low-frequency phonons below 6.5 THz.
Figure 7(b) exhibits the phonon relaxation lifetime of β-Ga2O3,
which is shorter than that of GaN in the almost entire frequency
domain.7 Assuming constant phonon anharmonicity, phonon relax-
ation lifetime relates linearly to the inverse of the three-phonon
scattering phase-space volume. Hence, β-Ga2O3 has a larger three-
phonon scattering phase space in which there are more channels for
supporting three-phonon scattering, resulting in the lower thermal
conductivity than GaN.

For a fair comparison between the GAP and DFT results, we
have adopted the same supercell with 160 atoms for the calculations
of both methods in the above discussion. Not employing a bigger
supercell is because of the fact that state-of-the-art DFT methods
normally only tackle the system sizes of a few tens or hundreds of
atoms. In fact, the MD simulations with GAP can model the sys-
tem sizes of up to thousands of atoms. Figure 8 shows the total
phonon density of states (PDOS) of 2500-atom β-Ga2O3 structures

FIG. 7. Analysis of phonon transport in
β-Ga2O3 by the GAP model. (a) Accu-
mulated thermal conductivity and (b)
phonon lifetime as a function of phonon
frequency at 300 K.
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FIG. 8. Large-scale simulations using the GAP: (a) 20-atom and 2500-atom struc-
tures of β-Ga2O3. Ga atoms are green, and O atoms are red. (b) Phonon density
of states of β-Ga2O3 at temperatures of 0 K, 300 K, and 900 K.

given by the GAP model at 0 K, 300 K, and 900 K. To calculate the
PDOS at 0 K, the finite displacement method has been applied.59 In
order to predict the PDOS at finite temperature, we have employed
the normal-mode-decomposition technique to extract anharmonic
phonon properties from MD simulations.62,63 The MD simulations
with the GAP model are run in the NVT ensemble. The 2500-
atom structure is first equilibrated for 50 ps until the temperature
has equilibrated and statistics are collected over 400 ps trajectories.
The larger supercell size allows us to more accurately interpolate
the quasiparticle phonon frequencies at incommensurate q-points.
In Fig. 8(b), the phonon density of states g(ω) is normalized by
∫

∞
0 g(ω)dω = 1. It is clearly seen that the peaks in the PDOS are

redshifted and become wider with an increase in temperature. The
temperature-dependent frequency shift is attributed to the coupling
between phonons having different momentum and band index. All
results from Fig. 8(b) illustrate the capability of GAP to model
large-scale atomic systems in long MD simulations. To accomplish
the same task, however, the DFT-based simulations are extremely
expensive and not feasible.

IV. CONCLUSIONS
In summary, we develop a machine learning based Gaus-

sian approximation potential for atomistic simulations of single-
crystalline β-Ga2O3. Our GAP model exhibits remarkable accuracy

in reproducing the ab initio potential energy surface of β-Ga2O3,
attaining a total energy accuracy of ∼0.3 meV/atom and force accu-
racy below 0.05 eV/Å for both the Ga and O atoms. MD with the
GAP model, however, is approximately four orders of magnitude
faster than DFT, for 160 atoms. We then employ the GAP model
to predict ground-state lattice parameters, heat capacity, coefficients
of thermal expansion, phonon dispersions at 0 K, and anisotropic
thermal conductivity of β-Ga2O3. All these results show excellent
agreement with those either from DFT calculations or from exper-
imental measurements. Moreover, it is demonstrated that the GAP
can well describe the lattice dynamics of β-Ga2O3. Finally, we per-
form a large-scale simulation using the GAP for the phonon density
of states of β-Ga2O3 at finite temperature, which demonstrates the
capability of GAP to model large-scale atomic systems in long MD
simulations. Thus, the GAP models appear to be promising tools
to further study the thermal conductivity of β-Ga2O3 thin films
and interlayer interactions between the substrate and β-Ga2O3. Both
applications are significant for the development of the high-power
devices based on β-Ga2O3 but extremely expensive and not even
feasible for the DFT-based simulations.
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